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fields has been proposed and experimentally validated [10],
[11]. The basis of this concept is that the FFP / FFL is steered
through the FOV to receive a signal from several volume
elements along suitable trajectories during a measurement
[12], instead of limiting the data acquisition to one volume
element during a measurement [1], [13]. However, taking
heating and nerve stimulation into account, the FOV is limited
in size by the applicable drive field frequencies [14], [15],
[16]. To solve this challenge, additional electromagnetic fields
featuring a high field amplitude and a low frequency, referred
to as focus fields, have been introduced [1], [17]. Thus, it
becomes possible to enlarge the FOV dimensions without
violating the potential limitations indicated above. Instead of
scanning one large FOV, several smaller partial FOVs (pFOVs)
are scanned separately [18], [19].

Nevertheless, an enlargement of the FOV in the axial direc-
tion remains challenging. One possible way, is to combine a
two-dimensional data acquisition with a sequential mechanical
or electromagnetical movement of the object in the transversal
direction. Due to the discrete step-by-step enlargement of the
FOV in relation to the objects inertia, such a data acquisition
is a possible scenario for phantom and in-vitro measurements
in MPI. As proposed recently [19], [20], [21], acquiring the
particle signal during the continuous movement of an object
through the imaging plane is a promising approach for solving
the problems of scanning larger axial areas. Combining this
technique with static FFL MPI, using projection imaging and
fully sampled pFOVs, has been presented. In accordance with
the derived theoretical basics, first experiments were carried
out showing the potential of this technique with respect to
spatio-temporal resolution for phantom-based measurements.
However, while use of such a system, which requires a rotation
of the desired object, is an excellent approach for phantom-
based measurements and in-vitro imaging, it will hardly be
transferable to in-vivo measurements.

Based on the idea of moving an object continuously through
the imaging area, an approach for FFP-based data acquisition
with fast spatial encoding via drive fields is presented in this
work. A key factor of this new approach is that the acquisition
of real three-dimensional information is possible by using
only a two-dimensional MPI scanner system. The combina-
tion of the continuous object movement with an actual two-
dimensional FFP trajectory causes an elongation of the data
acquisition path in axial direction. In contrast to a sequential
imaging approach, a controlled sub-sampling of the object is
intended to preserve the potential of MPI being a fast imaging
modality. Taking into account the region XS in relation to the
applied gradient strength G, no significant information about
the scanned object is lost. As a characteristic measure for the
spatio-temporal generation of an FFP trajectory and its axial
elongation, the inherently generated self-intersection points of
a two-dimensional trajectory are introduced. The information
obtained from these trajectory specific points can be used to
determine the temporal differences between trajectory covered
points in the imaging area. Combined with the approach of
elongating the FFP trajectory in axial direction, it becomes
possible to measure the resulting axial distances. By including
these distances into the imaging approach, an even further

enlargement of the imaging area becomes possible.

II. MATERIAL AND METHODS

The data acquisition in MPI, allowing for two-dimensional
and three-dimensional FFP movement through the FOV, is
performed by using suitable trajectories. The planar two-
dimensional Lissajous trajectory (see Figure 2(a)), as presented
in [22] and compared to other possible FFP data acquisition
pathes in [12], provides adequate sampling homogeneity of
the FOV. Due to this, the Lissajous trajectory is chosen as
the exemplary acquisition path for the simulation experiments
carried out in this work. Nonetheless, all techniques presented
in this work are applicable for arbitrary trajectories.

A. Properties of the Lissajous Trajectory

To generate a planar two-dimensional Lissajous trajectory,
alternating currents

Ix(t) = I0x sin(2πfxt) (3)

Iy(t) = I0y sin(2πfyt) (4)

are applied in perpendicular orientated drive field coils. I0x and
I0y are the drive field amplitudes in x and y direction, fx and
fy are the applied frequencies, and t represents time. To ensure
a finite repetition time TR, i.e. a closed planar trajectory, the
frequencies should have a commensurable ratio fx/fy [12].
The frequencies are dependent on a base frequency fB and
the frequency dividers nx and ny with nx, ny ∈ N. Further it
holds that

fx =
fB
nx

and fy =
fB
ny

. (5)

The planar density of the trajectory can be adjusted by
changing the frequency ratio fx/fy . Typically the frequencies
are chosen to be similar, i.e. fx ≈ fy . Assuming a commen-
surable ratio, the repetition time for a Lissajous trajectory is
given by

TR =
lcm{nx, ny}

fB
, (6)

with lcm{nx, ny} being the least common multiple of the
chosen frequency dividers.

B. Axial Elongation

A planar two-dimensional trajectory, as shown in Fig-
ure 2(a), can be used in order to encode a three-dimensional
volume, as shown in Figure 2(b), in a repetition time TR. The
information in the z direction will be acquired in a volume
of thickness 2XSG

−1 [7]. Thus, a larger volume consisting
of m non-intersecting volumes can be sequentially encoded
using m two-dimensional planar trajectories in a time m ·TR.
Such a discrete axial concatenation of several planar two-
dimensional trajectory scans with a distance of 2XSG

−1 is
referred to as a sequential data acquisition. However, a step-
by-step movement of the object through the imaging plane by
a distance of 2XSG

−1 every TR is a technically challenging
task and not easy to transfer to human applications.
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To overcome this challenge, the trajectory can be axially
elongated in z direction over a distance of 2XSG

−1 in a time
TR with a constant speed vez , as is shown in Figure 2(c). Thus,
vez can be expressed as:

vez =
2XS

GTR
. (7)
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Figure 2. Data acquisition using a Lissajous trajectory. For purposes of
illustration, a sparse trajectory is shown instead of the actual scanning
trajectory. (a) Exemplary two-dimensional Lissajous trajectory in the xy-
plane. (b) Three-dimensional view on the used planar Lissajous trajectory
acquiring data in a volume element. To encode one volume element a change
in magnetization of 2XSG

−1 is necessary. (c) Axially elongated Lissajous
trajectory covering the whole volume element.

C. Self-Intersection Points

To determine if there is information redundancy or loss
caused by the elongation, the investigation of self-intersection
points (SIPs) of a trajectory is recommended.

SIPs are defined as spatio-temporal locations in the imaging
plane, which are visited at least twice by the trajectory. This
means, each two-dimensional self-intersecting trajectory is
defined as γ : t → r with t ∈ R, r ∈ R2 featuring N SIPs.
N depends upon the frequency ratio, where N increases with
decreasing frequency ratio and vice versa. An SIP is defined
by two time points t1 and t2 of the trajectory γ(t) with t1 6= t2
that fulfill

γ(t1) = γ(t2) . (8)

If the two-dimensional trajectory γ(t) is elongated in axial
direction it follows that γ′ : t → r′ with t ∈ R, r′ ∈ R3. In
consideration of equation (7), it is therefore given that

γ′(t1) =

[
γ(t1)
vez · t1

]
and γ′(t2) =

[
γ(t2)
vez · t2

]
. (9)

It follows, that the temporal difference between the time points
is

∆t = |t1 − t2| , (10)

whereas the axial elongation ε of the trajectory at each SIP
can be measured by

ε = ∆t · vez . (11)

As mentioned before, the Lissajous trajectory is used as
the exemplary FFP data acquisition path. For purposes of
illustration, the frequency dividers are chosen as nx = 7 and
ny = 8. A graphical visualization of the resulting Lissajous
trajectory and the corresponding SIPs is shown in Figure 3.

In order to provide significant information about the elon-
gation in axial direction, the first step is to determine ∆t for

x

y

x

y

Figure 3. Lissajous trajectory based on frequency dividers nx = 7 and
ny = 8 featuring the corresponding SIPs (gray circles).

each SIP. To evaluate the impact of ∆t within the elongated
trajectory, the frequency distribution over all occurring tem-
poral differences has to be calculated as well.

To determine the frequency distribution, the width of the
subdivided parts, also known as bins, is calculated according
to the Freedman-Diaconis rule [23] by

bw = 2 · IQR(∆t)

N1/3
, (12)

where IQR is the interquartile range. By taking equation (12)
into account, the number of bins can be calculated by

bn =

⌈
max(∆t)−min(∆t)

bw

⌉
. (13)

Assuming, there is a Lissajous trajectory with
t1, t2 ∈ [0, TR), the difference ∆t according to equation (10) is
within 0 < ∆t < TR. For the exemplary Lissajous trajectory,
the corresponding SIPs as well as a representation of the
temporal differences for each SIP within TR, are illustrated in
Figure 4(a). The respective frequency distribution is presented
in Figure 4(b).
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Figure 4. Lissajous trajectory with frequency ratio 7/8 featuring the corre-
sponding SIPs. (a) Gray-scale mapped representation of ∆t of each SIP. The
values are normalized to the range [0,1] with the upper limit corresponding to
TR. (b) Frequency distribution of the temporal differences between the SIPs.

Since the axial elongation of the trajectory is performed in
a continuous manner, the consideration of only one trajectory
repetition is not sufficient for the calculation of the minimal
SIP distances. Assuming, there is a pair t1, t2 ∈ [0, TR), there
is a pair t′1, t

′
2 ∈ [TR, 2TR) that fulfills

γ(t1) = γ(t2) = γ(t′1) = γ(t′2) . (14)

In order to get a significant measure of the trajectory’s density
in axial direction, the minimal temporal SIP difference has
been chosen as

∆tmin = min{|t1 − t2|, |t′1 − t2|} . (15)
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Further with
|t1 − t2|+ |t′1 − t2| = TR (16)

it follows that 0 < ∆tmin ≤ 0.5TR. In addition to the minimal
temporal differences ∆tmin, the maximal differences

∆tmax = max{|t1 − t2|, |t′1 − t2|} (17)

have to be considered as well. Taking into account equa-
tion (16), it is given that 0.5TR ≤ ∆tmax < TR. A graphical
illustration of ∆tmax is presented in Figure 5. In order to ensure
an adequate covering of the imaging area, ∆tmax is an essential
parameter of the actual trajectory elongation in axial direction
as described by equation (11).
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Figure 5. Lissajous trajectory with frequency ratio 7/8 featuring the corre-
sponding SIPs. (a) Gray-scale mapped representation of ∆tmax of each SIP
for two repetitions. The values are normalized to the range [0,1] with the
upper limit corresponding to TR. (b) Frequency distribution of the temporal
differences between the SIPs.

D. Axial Elongation considering Self-Intersection Points

Taking into account the SIPs of a two-dimensional trajec-
tory, it is possible that the trajectory can be further elongated
in axial direction. In order to avoid any information loss,
the maximal distance in axial direction εmax between two
points generating an SIP, should be equal to 2XSG

−1. Thus,
equation (11) can be re-written as

εmax = ∆tmax · vz =
2XS

G
, (18)

which leads to

vz =
εmax

∆tmax
=

1

∆tmax
· 2XS

G
, (19)

as an expression for speed.
For the example Lissajous trajectory shown in Fig-

ure 5, ∆tmax T
−1
R is ranging from 0.5 to 0.876. With

max (∆tmax) = 0.876TR , the speed vz calculated by equa-
tion (19) is equal to 1.14 vez and is therefore increased to the
acquisition technique described in section II-B.

In order to further increase the scanning speed, ∆tmax
must be reduced. Such a reduction can be achieved by
focusing on only a subsample of the SIPs that are within
tmax T

−1
R ∈ [0.5, 0.594). This subsample represents 23.7% of

the total number of SIPs N . As shown in Figure 5, the
SIPs that belong to this interval are arranged in a cross-like
structure on the projected two-dimensional plane, and may ac-
quire enough information to reconstruct the tracer distribution
without significant loss. Thus, the speed vez could be increased

by at least a factor of 1.68, by using tmax T
−1
R = 0.594 and

23.7% of the SIPs that fulfill equation (18). Or, it can be
increased up to a factor of 2, by using tmax T

−1
R = 0.5 and

fewer SIPs that fulfill equation (18). An example illustration
of an elongation up to 2 · 2XSG

−1 is shown in Figure 6.
It has to be noted that a rectangular volume will be acquired

only for large value of m, as the first and last 2XSG
−1 volume

will not contain enough information at each SIP to be fully
reconstructed.
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Figure 6. Illustration of the further elongated data acquisition using the
information achieved from the SIPs. (a) View on the Lissajous trajectory in
the xy-plane. (b) Axially elongated Lissajous trajectory covering a distance
of 4XSG

−1. In addition to this, two virtual planes at the sampling position
of the system matrix are shown in gray.

E. Reconstruction of the Acquired Data
The receiving signal in MPI is a time dependent voltage

signal u that is induced by the change of the particles’
magnetization. To reconstruct an image of the corresponding
particle distribution c, a correlation between u and c has to
be determined.

In MPI, two approaches exist to reconstruct an image: the
system matrix approach and x-space reconstruction [24].

The MPI system matrix can either be measured or modelled
and includes the particle response at every spatial position
r = 1, . . . , R in the FOV. Using a measured system ma-
trix leads to the most accurate reconstruction results so far,
since field inhomogeneities and non-linearities, as well as
particle characteristics such as relaxation and hysteresis, are
intrinsically included. However, acquiring a measured system
matrix is time consuming and a system of equations has
to be solved. A faster and more direct approach is the x-
space reconstruction. The measured signal u is normalized
with the FFP speed and gridded to the corresponding FFP
position. Unfortunately, applying fast two-dimensional trajec-
tories necessitates a deconvolution to achieve good spatial
resolution with x-space. The two-dimensional convolution
kernel depends on the orientation of the FFP. As such, a
deconvolution could not be formulated so far.

Since the system matrix approach promises more accurate
results for arbitrary trajectories, this technique is applied to
validate the experiments in this work. However, the x-space
approach is highly interesting for future applications.

With the system matrix S ∈ CR×K and the measured
voltage u ∈ CK the system of equation

Sc = u (20)

can be formulated. The number of spatial positions R and the
number of used frequency components K determine the size
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of the system. Due to noise and the fact that the problem of
calculating the unknown particle concentration c ∈ RR is ill-
posed, a regularized weighted least squares solution is to be
preferred

‖Sc− û‖2W + λ ‖c‖22
c−→ min . (21)

Equation (21) is solved using iterative solvers. For the ex-
periments in this contribution, the iterative Kaczmarz method
is used. Since the system matrix approach is independent of
the used trajectory, an adaption to the approach proposed here
is not necessary.

F. Experiments

The simulation experiments carried out in this feasibil-
ity study are performed on ideal magnetic fields using an
FOV with a size of 1 cm× 1 cm× 4XSG

−1 discretized into
100× 100× 2 volume elements. According to [22], the ap-
plied noise model is formulated by U2

Noise = 4kBT ∆f Rp,
whereas kB is the Boltzmann constant, T the patient tem-
perature, ∆f the bandwidth determined by the sampling
frequency, and Rp the noise resistance. The applied gradient
strength is 2 Tm−1µ−10 in y direction and 1 Tm−1µ−10 in x
and z directions. To simulate the continuous object movement
through the two-dimensional imaging plane, an additional
linear focus field is applied [1], [17]. The applied frequencies
generating the FFP acquisition path are fx = 26.882 kHz and
fy = 25.252 kHz, using a base frequency fB = 2.5 MHz, and
frequency dividers nx = 93 and ny = 96.

Due to the trajectory chosen to carry out the simulations and
the proposed elongation in axial direction, the imaging area is
non-symmetrically scanned. Therefore, the resolution phantom
used to evaluate the proposed acquisition scheme consists
of equally distributed circles with a diameter of 1.0 mm. To
evaluate possible occurring differences with respect to the
FOV planes z1 and z2 , the same phantom is used in both
planes. The simulated ferrofluidal solution containing super-
paramagnetic iron oxide nanoparticles that is used in this
phantom is based on the Langevin theory assuming undiluted
Resovistr (Bayer Schering Pharma AG, Berlin, Germany)
with a particle size of 30 nm and XS = 1.1 mTµ−10 [7].

In addition to a qualitative comparison of the reconstruction
results, the normalized root mean square error (NMRSE), the
peak signal-to-noise ratio (PSNR), and the Dice coefficient
[25] are chosen as quantitative distance measures. For the Dice
coefficient, a global threshold is automatically set according
to the Otsu method [26].

III. RESULTS

Due to the fact that the sequential data acquisition as
introduced in section II-B is a possible scenario for most
two- or three-dimensional scanner systems, it is assumed as
ground truth. Based on the considerations regarding the axial
elongation of a two-dimensional trajectory combined with
the idea of SIPs as a distance measure, an elongation of
2XSG

−1, 3.36XSG
−1, and 4XSG

−1 is investigated. As an
additional scenario, an elongation of 8XSG

−1 is performed to

show the limitations of the acquisition technique. In Figure 7,
the reconstruction results based on these data acquisition
parameters are presented.

When comparing the qualitative image impression of the
sequential and the 2XSG

−1 elongated data acquisitions, it can
be seen that there are small differences considering intensity
and shape. The trajectories, elongated over a distance of
3.36XSG

−1 and 4XSG
−1, produce results that are almost

the same as with the 2XSG
−1 elongation, but with small

differences in some parts of the reconstructions. For example,
a difference can be seen when focusing on the circular
structures in the lower right corner, where a slightly stronger
distortion can be observed for the 3.36XSG

−1 and 4XSG
−1

elongations. The reconstruction results for an elongation over
a distance of 8XSG

−1 are significantly worse in terms of
intensity and shape. From the results of the sequential ac-
quisition to the 8XSG

−1 elongation based acquisition it can
be observed that a blurring between the circular structures
becomes more prominent. In agreement with the theoretical
assumptions about the elongation and a non symmetrically
scanned imaging area, the quality of the reconstructions is not
the same over the whole image. In some parts, for example
near the top right corner of the images, the results appear
more accurate than in other parts. In the sequentially acquired
images, small interferences between the imaging planes arise.
Such artifacts are not visually apparent when the images are
acquired with the axially elongated trajectories. Due to the
different gradient strengths in x and y directions and the fact
that the y direction is the preferential gradient direction, the
image resolution in the reconstructed images is slightly better
in y direction. For example, a blurred distortion of the circles
is more prominent in the x direction than in the y direction
for plane z1 as well as plane z2.

In addition to the qualitative observation of the reconstruc-
tion results, three different quantitative comparison metrics
are chosen: NRMSE, PSNR, and Dice coefficient. As shown
in Table I, the aforementioned observations regarding the
differences in the reconstruction results can be confirmed
by all three metrics. To begin with, the focus is on the
acquisition procedures for which the model proposed in this
work predicts reliable results. The differences between the
sequential 2XSG

−1, the elongated 2XSG
−1, 3.36XSG

−1,
and 4XSG

−1 and the used phantom data is about 22 % to 26 %
for the NMRSE and 12 % to 19 % for the Dice coefficient. As
expected, the highest values for the PSNR can be achieved
with the sequential 2XSG

−1 data acquisition and the lowest
with the elongated 4XSG

−1 acquisition technique. In plane z1,
the calculated differences between the considered acquisition
techniques are about 3 % to 4 % for the NMRSE, up to
11 % for the PSNR, and 6 % to 7 % for the Dice coeffi-
cient, with the best results for all metrics being achieved by
the sequential acquisition technique. The differences between
the images acquired by the elongated trajectories are less
than 1 %, with a better result for the 2XSG

−1 elongation
compared to the 3.36XSG

−1 and 4XSG
−1 elongation. The

results in plane z2 are about the same as in plane z1. When
elongated acquisition is compared with sequential acquisition,
the differences between planes z1 and z2 are below 1 %,
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Figure 7. Illustration of the resolution phantom and the reconstruction results based on sequential, elongated 2XSG
−1, elongated 3.36XSG

−1, elongated
4XSG

−1, and elongated 8XSG
−1 data acquisition for both reconstruction planes z1 and z2. The values are scaled in the range [0,1].

although the best results are once again achieved by the
sequential acquisition technique. As expected by qualitative
image comparison and predicted by the applied model, the
worst results for the observed elongations for NMRSE, PSNR,
and the Dice coefficient in both planes are achieved by an
elongation of 8XSG

−1.

IV. DISCUSSION AND CONCLUSION

In this work, it has been shown that an axial elongation
of a two-dimensional FFP trajectory can be used as a data
acquisition path in MPI. Compared to a sequential acquisition,
the acquisition speed can be increased by a factor of 2 with
an elongation of 4XS , while the spatial resolution is almost
preserved. Due to the fact that stopping the patient table during
sequential scanning is not even considered in this study, the
acquisition speed can possibly be increased even further. Thus,
it is possible to acquire three-dimensional images using only
a two-dimensional MPI scanner topology combined with a
continuous movement of the measuring object.

The discretization of the system matrix and the correlated
slice distance for the sequential acquisition is a trade-off
between inter-slice coupling and image resolution. Due to the
fact that the elongation of a trajectory causes a subsampling
of the imaging region, a decisive part of this strategy is the
consideration of 2XSG

−1 as the maximum distance between
sampled parts. A farther distance would lead to a decreased
acquisition time, but also to an increase in information loss
and more pronounced subsampling artifacts.

The axial elongation of the two-dimensional FFP trajectory,
the generation procedure of the trajectory, and the resulting
parts of the imaging region, where information about the
scanned object can be acquired, are strongly related to each
other. Therefore, the choice of the trajectory already has an
immense influence on the location and size of subsampled
regions and therefore on the resulting overall image quality.
For example, the Lissajous trajectory that is chosen in this
work as the data acquisition path, is in the two-dimensional
case generated in a non-symmetrical way. As a result of
the elongation, the whole three-dimensional imaging area is

non-symmetrically scanned as well. This leads to a stronger
distortion and an increase in information loss in some parts
of the reconstructed images, whereas in other parts of the
reconstruction the image quality appears to be significantly
better.

Considering the maximum elongation distance of a data
acquisition path, a differentiation must be made between the
elongation distance of the trajectory over the whole imaging
area and the maximum axial distance between two sampled
points within this elongated trajectory. Here, independent from
the trajectory, the distance within the elongated trajectory is
always at least less than or equal to the full elongation distance.
How those distances are exactly distributed and positioned
within the trajectory strongly depends on the chosen trajectory.
It is possible that for a non-symmetrically generated data
acquisition path, such as the Lissajous trajectory, parts of the
imaging area will be sampled with significantly shorter axial
distances between the sampled points than others. Therefore,
even if the axial elongation over the whole imaging area
is larger than 2XSG

−1, it is possible that there is a still
sufficiently good image quality for higher elongation rates in
some parts of the imaging area. Nevertheless, it is important to
keep in mind that the theoretical limit of a significantly high
enough signal is within 2XSG

−1. This means that the max-
imum distance within an axially elongated trajectory should
be below this limit in order to ensure an adequate amount of
acquired information for the whole imaging area. Otherwise,
the acquired information about the object can contain artifacts
based on the too high subsampling.

A possible scenario for handling the elongation based
information loss and for increasing the spatial resolution,
would be to use the SIPs of the chosen trajectory as support
points for an interpolation of the acquired voltage signals.
In addition to known interpolation schemes such as linear
or cubic interpolation, new approaches that directly include
the acquisition path and the particle characteristics could be
possible. In order to define the limits of the axial resolution
when using the elongation of the two-dimensional trajectory,
it is mandatory to understand the particle characteristics. The
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Table I
COMPARISON BETWEEN PHANTOM AND 2XSG

−1 SEQUENTIAL ACQUISITION AS WELL AS ACQUISITION WITH 2XSG
−1 , 3.36XSG

−1 , 4XSG
−1 , AND

8XSG
−1 ELONGATION USING THE NMRSE, THE PSNR, AND THE DICE COEFFICIENT FOR PLANE z1 / z2 .

Sequential 2XSG
−1 Elongated 2XSG

−1 Elongated 3.36XSG
−1 Elongated 4XSG

−1 Elongated 8XSG
−1

NRMSE 0.220 / 0.220 0.253 / 0.251 0.256 / 0.254 0.257 / 0.256 0.275 / 0.273

PSNR 131.387 / 131.386 119.366 / 119.919 118.433 / 118.933 117.962 / 118.415 112.153 / 112.659

Dice 0.888 / 0.888 0.828 / 0.825 0.822 / 0.817 0.817 / 0.811 0.724 / 0.724

exploration and evaluation of different FFP trajectories within
the context of the aforementioned considerations is essential.

The proposed acquisition scheme has to be realized on
different implemented scanner systems for the validation of the
simulated concepts presented in this work. As an alternative
to the mechanical movement of the object, the focus fields
offer a realization of the presented acquisition scheme. The
technical and algorithmical challenges are highly dependent on
the chosen MPI scanner, whether it is a symmetrical scanner
system as in [1] or, for example, an asymmetrical scanner
setup as presented in [4]. Assuming the latter, magnetic field
inhomogenities could lead to a distortion of the generated FFP
trajectory. In order to apply the proposed acquisition scheme,
such distortions would need to be handled. With respect to
the actual movement of the measuring object, it remains to be
evaluated which movement speed through the imaging plane
is possible, and which combination of speed, repetition time,
and applied frequencies provides optimal results.
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