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Abstract
In this contribution, a simple representation for magnetic fields based on spherical harmonics is presented. Compared
to the acquisition on a Cartesian grid, it reduces the amount of acquired and stored data, and may increase the precision
of the field representation in given scenario. The series expansion of the field generated by a drive coil is presented and
the truncation error is studied. Furthermore, time and space models of the magnetic fields generated by a field-free point
and a field-free line scanner using the spherical harmonic representation are presented. The proposed representation has
the potential to improve the analysis of the MPI technology, by providing a compact and flexible way to represent MPI
scanners and the associated magnetic fields.

1 Introduction
To date, magnetic fields used in magnetic particle imaging
(MPI) scanners have mostly been defined implicitly by the
coils needed to generate them or by an ideal approximation
of their topology [1].
As many aspects linked to the MPI technology need to sim-
ulate, evaluate and validate the exact topology of magnetic
fields, a better way to represent the fields is required. This
may aim to a broader definition of the signal generation in
scanners, analytical ways to design scanners, better accu-
racy of modeled system matrices, faster reconstruction for
field-free line scanners or a technique for the quality control
during the production of scanners.
An appropriate way to represent the magnetic field on a 2D-
or 3D-Cartesian grid is to fit some polynomials in specific
points on the grid in order to approximate the field topol-
ogy. However, this technique includes two major draw-
backs. First, the number of measured points may increase
with the surface, volume or resolution increase, leading to
a huge amount of data, which may be difficult to store and
work with. Second, the approximation of the field topology
with polynomials may include large errors due to an insuf-
ficient sampling and the use of fitting models with limited
order [2].
The representation of divergence-free fields using series ex-
pansion overcomes those two limitations. For most coils
in MPI, as the length to diameter ratio is below ten, the
spherical harmonics series expansion (SHSE) is preferred.
Indeed, the effects of the coil’s end parts may still have a
huge influence on the magnetic field topology in the center
of it, and a spherical representation is better suited for this
situation [2].
However, the SHSE is not exempt from drawbacks, one of
them being the interpretation errors caused by the use of
different normalizations. Nevertheless, this may also be ad-
vantageously used, as the different normalization may facil-
itate the direct evaluation of derived quantities. For exam-
ple, with the Schmidt quasi-normalization, each coefficient
represents the maximum amplitude reached by the corre-
sponding spherical harmonic on a sphere, which helps to

quickly evaluate the field amplitude at different position.
In this contribution, a wide spectrum of the tools needed to
understand and use this representation are presented. The
SHSE is depicted in different ways, so that a correlation be-
tween the SHSE and other ways of representing magnetic
fields can easily be made. To highlight the differences be-
tween the SHSE and the Cartesian representation, the mag-
netic field generated by a drive coil is taken as an example.
Finally, theoretical field-free point (FFP) and field-free line
(FFL) scanners are presented, to demonstrate the compact-
ness and flexibility of this representation.

2 Methods

In this section the basic mathematical principles of the
SHSE and its applications to the magnetic field measure-
ment is presented.

2.1 Basic differential equation

In an investigated area, where no electric current flows, ev-
ery component of a magnetic field Bi, i = x, y, z satisfies
the Laplace equation

∆Bi = 0 (1)

due to Maxwell’s equations [3]. To solve the Laplace equa-
tion for a given problem, some constraints have to be im-
posed. In the case of solving the problem with the SHSE,
the Dirichlet boundary condition{

∆Bi = 0 , in {x ∈ R3, ‖x‖ < R}
Bi(x) = g(x) , in S2

R

(2)

is used. Here the values of the magnetic field components
have to be known on the sphere S2

R with fixed radius R and
are described by a continuous function g.



2.2 Solution

Applying spherical coordinates (r, θ, ϕ), the solution of the
problem (2) is given by the series expansion

Bi(r, θ, ϕ) =

∞∑
l=0

l∑
m=−l

cRlm

( r
R

)l
Ylm(θ, ϕ), (3)

with coefficients cRlm of the normed real spherical harmon-
ics Ylm [4]. The spherical harmonics, shown on Fig. 1, are
defined by

Ylm(θ, ϕ) =


√

2Km
l cos(mϕ)Pml (cos θ) ,m > 0

K0
l P

0
l (cos θ) ,m = 0√

2K
|m|
l sin(|m|ϕ)P

|m|
l (cos θ) ,m < 0

(4)
with Pml the associated Legendre polynomials and Km

l the
normalizing factor defined by

Km
l =

√
(2l + 1)

4π

(l −m)!

(l +m)!
. (5)

Here l = 0, 1, 2, ... denotes the degree and m the order of
the spherical harmonic, with −l ≤ m ≤ l. The associated
Legendre polynomials can be calculated using the recursion

P 0
0 (x) = 1

Pmm (x) = (2m− 1)!!(1− x2)
m
2

Pmm+1(x) = x(2m+ 1)Pmm

Pml (x) = x
2l − 1

l −m
Pml−1(x)− l +m+ 1

l −m
Pml−2(x)

(6)

with 0 ≤ m ≤ l and the double factorial (2m − 1)!! =∏m
i=1(2i− 1).

2.3 Projection formula

The normalization presented in (5) forms an orthonormal
basis of the square-integrable functions of the unit sphere
S2 with respect to the standard scalar product

〈f, g〉 =

∫
S2

fg dΩ

=

∫ 2π

0

∫ π

0

f(θ, ϕ)g(θ, ϕ) sin(θ) dθ dϕ.

(7)

Thus, the coefficients cRlm from (3) can be calculated by the
projection formula

cRlm =

∫ 2π

0

∫ π

0

g(θ, ϕ)Ylm(θ, ϕ) sin(θ) dθ dϕ. (8)

Thereby, it is sufficient to know the magnetic field on a
sphere to determine the coefficients which describe the en-
tire magnetic field of the whole ball.

(a)

(b)

Figure 1: Two ways to represent the spherical harmonics
Ylm with l ≤ 2 and −l ≤ m ≤ l. θ and ϕ are interpreted as
spherical coordinates of the unit sphere. (a) The amplitude
is represented as color variation. (b) The amplitude on the
xy-plane is represented as color variation.

2.4 Normalization
Several types of normalization are commonly used, based
on the wanted properties of interest. Outside the mathe-
matical normalization presented in (5), the Schmidt quasi-
normalization can also be used. It is defined as

Km
l =

√
(l −m)!

(l +m)!
, (9)

which normalize the maximum of the spherical harmonics
to one [5]. Therewith, the coefficients of the SHSE correlate
immediately to the maximum influence of the correspond-
ing spherical harmonics. However, this normalization pro-
vides no orthonormal basis and thus the projection formula
(8) has to be adapted by dividing through the squared norm
of the the quasi-Schmidt normalized spherical harmonic:

‖Ylm‖2 =
4π

2l + 1
. (10)

2.5 Numerical integration
A simple way to evaluate the magnetic field on a sphere is
to measure its amplitude at some discrete points. In order



to do this, the integral of the projection formula (8) has to
be replaced by a numerical integration formula

Nθ∑
i=1

Nϕ∑
j=1

ωθi ω
ϕ
j g(θi, ϕj)Ylm(θi, ϕj) sin(θi) (11)

with Nθ discretization positions of θ, Nϕ discretization po-
sitions of ϕ and their corresponding weights ωθi and ωϕi .
Due to the independence of ϕ and θ in the spherical har-
monics definition (4), the integral can be split into the ϕ-
part and the θ-part.
As the ϕ-part contains only cosine or sine functions, the
integration in done with the left rectangle method using
equidistant discretization positions ϕj = (j − 1) π

Nϕ
and

the weights ωϕj = π
Nϕ

.
In contrast to this, after the substitution of s = cos(θ), the
θ-part only contains the associated Legendre polynomials.
Knowing that the Gaussian quadrature, also known as the
Gauss-Legendre quadrature, uses weights and discretiza-
tion positions determined using the Legendre polynomials,
it is therefore optimal for integration of the θ-part. The Nθ
discretization positions si are the zeros of the Nθth Leg-
endre polynomial and the weights ωθi are adapted in such
a way, that with Nθ discretization positions a polynomial
with degree 2Nθ − 1 can be exactly integrated [6]. The
discretization of θ is therefore given by θi = cos−1(si).

2.6 Maximal order and degree
Assuming that the measured magnetic field can be com-
pletely described by spherical harmonics up to order
(lmax,mmax), with lmax + 1 sampling points in θ-direction
and 2mmax + 1 sampling points in ϕ-direction, the coeffi-
cients can be exactly computed with the proposed numeri-
cal integration formulas. This is due to the special structure
of the spherical harmonics and the properties of the used
numerical integration formula.

2.7 Implementation
Calculations have been done in Matlab (Matlab 7.11.0
64bit, Mathworks, Natick, USA). The implementa-
tion is available on http://www.imt.uni-luebeck.de and
http://github.com/gBringout/CoilDesign.

3 Results
In this section, practical examples are given to emphasize
the advantages and limitations of the SHSE for the MPI
community.

3.1 Truncation error
It has been seen that a magnetic field containing a finite sum
of spherical harmonics can be represented by its value on a
finite number of points. But, for a given coil, it is hard to
know, which spherical harmonics are included in the gener-
ated magnetic fields. Thus, it is likely that truncation errors

Table 1: Truncation error evaluation for a drive coil.
# of

points (lmax,mmax) ∆c00
cGS00

∆c20
cGS20

Maximum error
∆clm
cGSlm

(l,m)

45 (4,4) 0.4% 0.9% 4.6 (4,4)
66 (5,5) 0.1% 0.8% 4.3 (4,4)

6216 (55,55) 2e−8 6e−8 1374 (51,41)

will happen when choosing a maximal order and degree for
the representation.
In order to evaluate these errors, three projections of the
magnetic field generated by a coil were calculated on dif-
ferent sets of points and compared. The coil is shown in
Fig. 2a and the results are shown in Table 1. The "gold
standard" coefficient cGSlm were approximated by a series ex-
pansion up to degree and order 120 on 29161 points. The
coefficient clm were evaluated with a series expansion up to
order and degree (4,4), (5,5) and (55,55) and the absolute
error was calculated as ∆clm = clm − cGSlm .
Considering the two coefficients which have the highest am-
plitude, namely c00 and c20 for the presented coil, a series
expansion up to order and degree 4 is sufficient to keep the
truncation error below 1 %. Even if the maximum error
reach 460 % for the spherical harmonic of order 4 and de-
gree 4, it has to be noted that the associated coefficient are
here of small amplitudes, as shown in Fig. 2b.

3.2 Compactness of the representation
A field of degree lmax = 4 and order mmax = 4 requires
only (4 + 1) ∗ (2 ∗ 4 + 1) = 45 data points per field di-
rection to be represented. Furthermore, the storage of only
3*25 points is necessary after the usage of the projection
formula (11). Those coefficient enables the reconstruction
of the field anywhere in a ball of radius R with no other
intrinsic resolution limitation. In comparison, a Cartesian
grid as shown in Figure 2a in a 9 cm radius circle with a
resolution of 2 ∗ 2 mm2 requires data on 6361 points.

3.3 Flexibility - theoretical MPI scanner
Theoretical scanners can be described by as little as thirteen
factors for the case of 3D FFP scanner and fourteen for a 2D
FFL scanner.
As shown in Table 2, six different SHSE coefficients linked
to four different values are enough to describe the whole
field topology. To provide the time variation of the fields,
three frequencies have to be applied on the corresponding
coefficients, knowing that the excitation is always produced
via in-phased sinusoidal signal. Thus, only 6 + 4 + 3 = 13
factors are needed to fully described a theoretical 3D FFP
scanner using the SHSE.
Similarly, a 2D FFL scanner is described by nine SHSE co-
efficients and three related values as shown in Table 3. As
for FFP scanners, sinusoidal signals are used to create the
signal and spatially encode it. But, when FFP scanners use
simply three sinusoidal functions, FFL scanners use ampli-
tude modulated signals for the drive fields. Those functions
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Figure 2: Representation of a drive coil with associated
sampling points. (a) Front, side and top view of the model,
respectively. On the front view,Bx is also represented in the
xy plan. The color bar is similar to the one used in Fig 1.
The contour represents the 10, 20 and 30% homogeneity
limits, starting in the middle. (b) SHSE using the Schmidt
quasi-normalization of the Bx fields up to the 4th degree.
The first bar represents the 0th degree, the next three the 1st,
etc. As a logarithmic scale is used, the negative coefficient
are represented with a darker color.

are cos(2π f1 t), sin(2π f1 t), cos(π f1 t) ∗ sin(2π f2 t) and
sin(π f1 t) ∗ sin(2π f2 t) for the Quad0, Quad45, Drive X
and Drive Y generators, respectively, where t represents the
time. Thus, only two frequencies are used and 9+3+2 = 14
factors are needed to completely described a theoretical
FFL scanner.

4 Conclusion
The mathematical description, compactness and flexibility
of the SHSE have been presented. Using this representa-
tion, the amount of acquired and stored data for the repre-
sentation of magnetic fields can be greatly reduced in com-
parison to the acquisition on a Cartesian grid.
Most importantly, the community can benefit from a strong
and compact way to represented the time and space varia-
tion of the magnetics fields in an MPI scanners. Coupled
with the description of the signal generation, this opens the
way of a full scanner optimization.

Table 2: Representation of a theoretical 3D FFP scanner.
Coil’s
name

clm Freq.
(Hz)Bx By Bz

Selection c11 = −a c1−1 = a c10 = 2a 0
Drive x c00 = b f1

Drive y c00 = c f2

Drive z c00 = d f3

Table 3: Representation of a theoretical 2D FFL scanner.
Coil’s
name

clm Freq.
(Hz)Bx By Bz

Selection c11 = −a c1−1 = a c10 = 2a 0
Quad0 c11 = a c1−1 = a f1

Quad45 c1−1 = a c11 = a f1

Drive x c00 = b f1, f2

Drive y c00 = c f1, f2

5 Acknowledgement
The authors wish to thank Alexander Weber for his contri-
bution to the method part. The authors gratefully acknowl-
edge the support of the German Federal Ministry of Educa-
tion and Research under grant number 13N11090 as well as
the European Union and the State Schleswig-Holstein with
the Program for the Future-Economy under grant number
122-10-004.

References
[1] T. M. Buzug et al., “Magnetic particle imaging:

Introduction to imaging and hardware realization,”
Zeitschrift für Medizinische Physik, vol. 22, no. 4, pp.
323 – 334, 2012.

[2] A. Wolski, “Maxwell’s equations for magnets,” in Pro-
ceedings of the 2009 CAS-CERN Accelerator School:
Specialised course on Magnets, Bruges, Belgium, 16-
25 Jun 2009, 2009, pp. 19–22.

[3] J. D. Jackson, Classical electrodynamics, 3rd ed.
Wiley-VCH, 1998.

[4] G. B. Arfken and H. J. Weber, Mathematical Methods
For Physicists, 4th ed. Academic press, 1995.

[5] D. Winch et al., “Geomagnetism and schmidt quasi-
normalization,” Geophysical Journal International,
vol. 160, no. 2, pp. 487–504, 2005.

[6] M. Hermann, Numerische Mathematik. Oldenbourg
Verlag, 2006.


